ဂျီဩမေတြီ: တည်းဖြတ်မှု မူကွဲများ

အရေးမကြီး Octahedron80 moved page ဂျီသြမေတြီ to ဂျီဩမေတြီ over redirect: glyph error (sr -> o)
အရေးမကြီးNo edit summary
စာကြောင်း ၁၀ -
= သမိုင်း =
[[File:Woman_teaching_geometry.jpg | thumb | အမျိုးသမီး ဂျီဩမေတြီ သင်ကြားပုံ။ [[ယူကလစ် ၏ အဲလိမန့်]] ကို ပုံဖေါ်စဉ် (၁၃၁၀ ခု)]]
၃၀၀၀ BCE လောက် မှ စ၍ ဂျီဩမေတြီ အစ၏ အထောက်အထား များကို [[အီဂျစ် နိုင်ငံအီဂျစ်နိုင်ငံ]]၏ [[မေဆိုပိုတမီးယာ]] နှင့် [[အင်းဒက် တောင်ကြား]] (Indus Valley) တို့တွင် တွေ့ရသည်။ အစပိုင်း ဂျီဩမေတြီ မှာ [[အလျား]]၊ [[ဧရီယာဧရိယာ]]၊ [[ထုထည်]] တို့နှင့် ပတ်သက်သော လက်တွေ့ နည်းစဉ် စုစည်းမှု များ ဖြစ်ပြီး ၄င်းတို့ကို [[မြေစာရင်း ကောက်ယူခြင်း]]၊ အဆောက်အဦး တည်ဆောက်ခြင်း၊ [[နက္ခတ္တ]] နှင့် ဖန်တီးမှု မျိုးစုံ တို့တွင်သုံးသည်။
== ရှေးဂရိတို့၏ မြေကိုတိုင်းတာသောပညာ ==
ဂျီဩမေတြီပညာကို ကျောင်းသားအများပင် လေ့လာသင်ကြားကြရပေမည်။ သင်္ချာဘာသာတွင် အလွန်အရေးပါသော ပညာတစ်ရပ် ဖြစ်၏။ မြေတိုင်းရာမှစ၍ ဤပညာမှာ တစ်ဆင့် တစ်ဆင့် ဖွံ့ဖြိုးလာခဲ့သည်။ ထိုပညာကို စနစ်တကျ ဖြစ်အောင် လေ့လာစီစဉ်ခဲ့သူ ရှေးဂရိပညာရှိကြီး ယူကလစ်ကို အစွဲပြု၍ ရှေးက ထိုပညာကို ယူကလစ်ဟူ၍ပင် ကျွန်ုပ်တို့ ခေါ်ဝေါ်ခဲ့
ဂျီဩမေတြီပညာကို ကျောင်းသားအများပင် လေ့လာသင်ကြား
ကြရပေမည်။ သင်္ချာဘာသာတွင် အလွန်အရေးပါသော ပညာ
တစ်ရပ် ဖြစ်၏။ မြေတိုင်းရာမှစ၍ ဤပညာမှာ တစ်ဆင့်
တစ်ဆင့် ဖွံ့ဖြိုးလာခဲ့သည်။ ထိုပညာကို စနစ်တကျ ဖြစ်အောင်
လေ့လာစီစဉ်ခဲ့သူ ရှေးဂရိပညာရှိကြီး ယူကလစ်ကို အစွဲပြု၍
ရှေးက ထိုပညာကို ယူကလစ်ဟူ၍ပင် ကျွန်ုပ်တို့ ခေါ်ဝေါ်ခဲ့
ကြသေးသည်။
 
 
ဂျီဩမေတြီဟူသော ဝေါဟာရသည် ဂရိဘာသာစကားမှ ဆင်းသက်လာ၍ မြေကိုတိုင်းသည်ဟု အဓိပ္ပာယ်ရ၏။ ဂျီဩမေတြီသည် ရှေးဂရိလူမျိုးတို့အဖို့ မြေကြီးတိုင်းတာသော ပညာ
ရခဲ့သော်လည်း ယခုအခါ ဂျီဩမေတြီ၏ အဓိပ္ပာယ်မှာ ပိုမိုကျယ်ပြန့်၍ လာသည်။
ဆင်းသက်လာ၍ မြေကိုတိုင်းသည်ဟု အဓိပ္ပာယ်ရ၏။ ဂျီဩမေတြီသည် ရှေးဂရိလူမျိုးတို့အဖို့ မြေကြီးတိုင်းတာသော ပညာ
ရခဲ့သော်လည်း ယခုအခါ ဂျီဩမေတြီ၏ အဓိပ္ပာယ်မှာ ပိုမို
ကျယ်ပြန့်၍ လာသည်။
 
ဂျီဩမေတြီသည် အလွန်ရှေးကျသော ကာလမှစ၍ တည်မြဲလာသည့် ပညာရပ်တစ်ခု ဖြစ်သည်။ ထိုပညာကို ရှေးခေတ်အီဂျစ်လူမျိုးတို့ စတင် အသုံးပြုခဲ့ကြဟန်တူသည်။ အီဂျစ်ပြည်တွင်း နိုင်းမြစ်ရေလျှံမှုကြောင့် မြေယာနယ်နိမိတ်များကို မကြာခဏ ပြန်လည် တိုင်းတာခဲ့ကြရသည်။ ထိုသို့ တိုင်းတာရာတွင် ထောင့်များကို ရေးဆွဲ၍ တိုင်းတာခဲ့ကြသည်။ ဧရိယာများကို တွက်ချက်၍လည်း တိုင်းတာခဲ့ကြသည်။ ပိရမစ်ခေါ် ကမ္ဘာကျော် အဆောက်အအုံကြီးများကို ဆောက်လုပ်ရာတွင် အီဂျစ်လူမျိုးတို့သည် ဂျီဩမေတြီ၌ ထင်ရှားသော စည်းမျဉ်းများကို ထိရောက်စွာ အသုံးပြုခဲ့ကြသည်။
ဂျီဩမေတြီသည် အလွန်ရှေးကျသော ကာလမှစ၍ တည်မြဲ
လာသည့် ပညာရပ်တစ်ခု ဖြစ်သည်။ ထိုပညာကို ရှေးခေတ်
အီဂျစ်လူမျိုးတို့ စတင် အသုံးပြုခဲ့ကြဟန်တူသည်။ အီဂျစ်ပြည်
တွင်း နိုင်းမြစ်ရေလျှံမှုကြောင့် မြေယာနယ်နိမိတ်များကိုမကြာ
ခဏ ပြန်လည် တိုင်းတာခဲ့ကြရသည်။ ထိုသို့ တိုင်းတာရာတွင်
ထောင့်များကို ရေးဆွဲ၍ တိုင်းတာခဲ့ကြသည်။ ဧရိယာများကို
တွက်ချက်၍လည်း တိုင်းတာခဲ့ကြသည်။ ပိရမစ်ခေါ် ကမ္ဘာ
ကျော် အဆောက်အအုံကြီးများကို ဆောက်လုပ်ရာတွင် အီဂျစ်
လူမျိုးတို့သည် ဂျီဩမေတြီ၌ ထင်ရှားသော စည်းမျဉ်းများကို
ထိရောက်စွာ အသုံးပြုခဲ့ကြသည်။
 
အီဂျစ်လူမျိုးတို့ အသုံးပြုခဲ့သော ဂျီဩမေတြီ၌ စည်းမျဉ်းစည်းမျဉ်းဥပဒေ အနည်းငယ်မျှ ပါရှိသည်။ ထိုစည်းမျဉ်းများဖြင့် သူတို့သည် ဂျီဩမေတြီပုံ အမျိုးမျိုးတို့၏ ဧရိယာများကို တိုင်းတာခဲ့
ကြသည်။ အထူးသဖြင့် ထောင့်မှန်များကို စနစ်တကျတိုင်းတာ ဆောက်လုပ်ခဲ့ကြသည်။ ဂရိလူမျိုးတို့သည် ဂျီဩမေတြီတိုင်းတာ နည်းများကို သိပ္ပံပညာရပ်အခြေသို့ ရောက်အောင် ပြုစု ပျိုးထောင် ပေးခဲ့ကြသည်။
ဥပဒေ အနည်းငယ်မျှ ပါရှိသည်။ ထိုစည်းမျဉ်းများဖြင့် သူတို့
သည် ဂျီဩမေတြီပုံ အမျိုးမျိုးတို့၏ ဧရိယာများကို တိုင်းတာခဲ့
ကြသည်။ အထူးသဖြင့် ထောင့်မှန်များကို စနစ်တကျတိုင်းတာ
ဆောက်လုပ်ခဲ့ကြသည်။ ဂရိလူမျိုးတို့သည် ဂျီဩမေတြီတိုင်းတာ
နည်းများကို သိပ္ပံပညာရပ်အခြေသို့ ရောက်အောင် ပြုစု ပျိုး
ထောင် ပေးခဲ့ကြသည်။
 
ရှေးဂရိပညာရှိတို့တွင် ယူကလစ်သည် ဂျီဩမေတြီပညာကို စနစ်တကျ ဖြစ်အောင် လေ့လာစီစဉ်ခဲ့သောသူ ဖြစ်သည်။ ယူကလစ် ရေးသားခဲ့သော စာအုပ် ၁၃ အုပ်အနက် ပထမ ၆ အုပ်နှင့် နောက်ဆုံး ၃ အုပ်တွင် ပလိန်း ဂျီဩမေတြီနှင့်ဆော လစ်ဂျီဩမေတြီအကြောင်းအရာများ ပါရှိလေသည်။ ပလိန်းဂျီဩမေတြီဆိုသည်မှာ မျက်နှာပြင်ညီ တစ်ခုတည်း၌ရှိသော ပုံများနှင့် စပ်လျဉ်း၍ လေ့လာရသော ဂျီဩမေတြီကို ဆိုသည်။
ရှေးဂရိပညာရှိတို့တွင် ယူကလစ်သည် ဂျီဩမေတြီပညာကို
စနစ်တကျ ဖြစ်အောင် လေ့လာစီစဉ်ခဲ့သောသူ ဖြစ်သည်။
ယူကလစ် ရေးသားခဲ့သော စာအုပ် ၁၃ အုပ်အနက် ပထမ ၆
အုပ်နှင့် နောက်ဆုံး ၃ အုပ်တွင် ပလိန်း ဂျီဩမေတြီနှင့်
ဆော လစ်ဂျီဩမေတြီအကြောင်းအရာများ ပါရှိလေသည်။
ပလိန်းဂျီဩမေတြီဆိုသည်မှာ မျက်နှာပြင်ညီ တစ်ခုတည်း
၌ရှိသော ပုံများနှင့် စပ်လျဉ်း၍ လေ့လာရသော
ဂျီဩမေတြီကို ဆိုသည်။
 
ထိုပုံများသည် စတုရန်း၊ တြိဂံ၊ စက်ဝိုင်း၊ အနားပြိုင်စတုဂံ စသည့် အလျားနှင့် အနံသာရှိသော ပုံများနှင့် ဖြစ်ကြသည်။ ဆောလစ်ဂျီဩမေတြီဆိုသည်မှာ ထုပုံများနှင့် စပ်လျဉ်း၍ လေ့လာရသော ဂျီဩမေတြီကို ဆိုသည်။ ထုပုံများသည် ကုဗတုံး၊ ဆလင်ဒါ၊ စက်ဝိုင်းလုံး၊ အဝိုင်းထုချွန် စသည့် အလျား၊ အနံ၊ အမြင့်ရှိသော ထုပုံများဖြစ်ကြသည်။ ယခုအခါ
ထိုပုံများသည် စတုရန်း၊ တြိဂံ၊ စက်ဝိုင်း၊ အနားပြိုင်စတုဂံ
ယူကလစ် ဂျီဩမေတြီပညာရပ်များကို ခေတ်နှင့်လျော်အောင် ပြုပြင်၍ ကျောင်းများ၌ သင်ကြားကြ၏။ဂျီဩမေတြီသင်ကြားရာတွင် ထောင့်များကို နားလည်ရန်မှာ များစွာပင် အရေးကြီးပေသည်။ အကြောင်းမှာမူ ကျွန်ုပ်တို့ သည် ထောင့်များ နေရာတကာတွင် တွေ့ရသောကြောင့် ဖြစ်ပေသည်။ စာအုပ်၌၎င်း၊ အရုပ်ကား၌၎င်း၊ အခန်း၌၎င်း၊ လမ်းဆုံများ၌၎င်း ထောင့်များကို ရှိကြသည်။ ထောင့်မှန်သည် ကျွန်ုပ်တို့ အတွေ့အကြုံ အများဆုံးသော ထောင့်မျိုး ဖြစ်၏။ မျဉ်းဖြောင့် နှစ်ကြောင်းသည် အမှတ်တစ်ခုတွင် တွေ့ဆုံ ဖြတ်
စသည့် အလျားနှင့် အနံသာရှိသော ပုံများနှင့် ဖြစ်ကြသည်။
သန်းကြသောအခါ ထောင့်များ ဖြစ်ပေါ်လာသည်။ ထောင့်မှန် အပြင် အခြားထောင့်များလည်း ရှိသေးသည်။ မြို့တစ်မြို့၏ မြေပုံကိုကြည့်လျှင် လမ်းများသည် ထောင့်အမျိုးမျိုးဖြစ်အောင် တစ်ခုနှင့်တစ်ခု ဖြတ်နေကြသည်ကို တွေ့ရပေလိမ့်မည်။ ထောင့် ဆောင်မျဉ်းဖြောင့်များကို ထောင့်လက်တံများဟု ခေါ်သည်။
ဆောလစ်ဂျီဩမေတြီဆိုသည်မှာ ထုပုံများနှင့် စပ်လျဉ်း၍
လေ့လာရသော ဂျီဩမေတြီကို ဆိုသည်။ ထုပုံများသည်
ကုဗတုံး၊ ဆလင်ဒါ၊ စက်ဝိုင်းလုံး၊ အဝိုင်းထုချွန် စသည့်
အလျား၊ အနံ၊ အမြင့်ရှိသော ထုပုံများဖြစ်ကြသည်။ ယခုအခါ
ယူကလစ် ဂျီဩမေတြီပညာရပ်များကို ခေတ်နှင့်လျော်အောင်
ပြုပြင်၍ ကျောင်းများ၌ သင်ကြားကြ၏။
ဂျီဩမေတြီသင်ကြားရာတွင် ထောင့်များကို နားလည်ရန်မှာ
များစွာပင် အရေးကြီးပေသည်။ အကြောင်းမှာမူ ကျွန်ုပ်တို့
သည် ထောင့်များ နေရာတကာတွင် တွေ့ရသောကြောင့်
ဖြစ်ပေသည်။ စာအုပ်၌၎င်း၊ အရုပ်ကား၌၎င်း၊ အခန်း၌၎င်း၊
လမ်းဆုံများ၌၎င်း ထောင့်များကို ရှိကြသည်။ ထောင့်မှန်သည်
ကျွန်ုပ်တို့ အတွေ့အကြုံ အများဆုံးသော ထောင့်မျိုး ဖြစ်၏။
မျဉ်းဖြောင့် နှစ်ကြောင်းသည် အမှတ်တစ်ခုတွင် တွေ့ဆုံ ဖြတ်
သန်းကြသောအခါ ထောင့်များ ဖြစ်ပေါ်လာသည်။ ထောင့်မှန်
အပြင် အခြားထောင့်များလည်း ရှိသေးသည်။ မြို့တစ်မြို့၏
မြေပုံကိုကြည့်လျှင် လမ်းများသည် ထောင့်အမျိုးမျိုးဖြစ်အောင်
တစ်ခုနှင့်တစ်ခု ဖြတ်နေကြသည်ကို တွေ့ရပေလိမ့်မည်။
ထောင့် ဆောင်မျဉ်းဖြောင့်များကို ထောင့်လက်တံများဟု
ခေါ်သည်။
 
မျဉ်း ၂ ကြောင်း တွေ့ဆုံသောနေရာသည် ထောင့်၏ထိပ် ဖြစ်သည်။ ပုံတွင် ကဝနှင့် ခဝတို့သည် ဝ ၌ တွေ့ဆုံကြသဖြင့် ကဝနှင့်ခဝ တို့သည် လက်တံများဖြစ်ကြ၍ ဝ သည် ထိပ် ဖြစ်သည်။ ထောင့်တစ်ခုကို ဖော်ပြလိုသောအခါ ကဝခ ထောင့် ဟူ၍ အက္ခရာသုံးလုံးဖြင့် ဖော်ပြလေ့ရှိသည်။ ထောင့်ကိုတဖန် ဟူသော အမှတ်အသားဖြင့် ဖော်ပြလေ့ရှိရာပုံတွင် ပြထားသော ထောင့်ကို ကဝခ (ကဝခ)သို့မဟုတ်အက္ခရာတစ်လုံး တည်းဖြင့် ဝ (ဝ)ဟု ရေးသား ဖော်ပြလေ့ရှိကြသည်။ သိပ္ပံ အလိုအားဖြင့် မျက်နှာပြင်တစ်ခုပေါ်တွင် မျဉ်းတစ်ကြောင်းသည် အခြားတည်မြဲသော မျဉ်းတစ်ကြောင်းမှ တည်မြဲသော အမှတ်တစ်ခုကို အစွဲပြု၍ လှည့်ပတ်သွားသောအခါ ထောင့်များ ဖြစ်လာကြသည်။ အောက်ပါစက်ဝိုင်းပုံတွင် မြားပြထားသော လက်တံသည် မျက်နှာပြင်ပေါ်ရှိ တည်မြဲသော မျဉ်းမှစ၍ တည်မြဲသောအမှတ်ကို လှည့်ပတ်သွားနေသည်။ လက်တံရပ်သောအခါ လက်တံနှင့် မျဉ်းတို့သည် ပုံတွင်ပြထားသည့်အတိုင်း ထောင့်မှန်ကျလျက် ရှိသည်။ထောင့်မှန်စတုဂံတွင် ဤထောင့်မျိုး ရှိသည်။ထောင့်များတွင် လက်ယာလှည့်ထောင့်နှင့် လက်ဝဲလှည့် ထောင့်ဟု ၂ မျိုး ရှိသည်။သို့ရာတွင် ဤနေရာ၌ လက်ဝဲလှည့် ထောင့်များကိုသာ စဉ်းစားမည်။
မျဉ်း ၂ ကြောင်း တွေ့ဆုံသောနေရာသည် ထောင့်၏ထိပ်
ဖြစ်သည်။ ပုံတွင် ကဝနှင့် ခဝတို့သည် ဝ ၌ တွေ့ဆုံကြသဖြင့်
ကဝနှင့်ခဝ တို့သည် လက်တံများဖြစ်ကြ၍
ဝ သည် ထိပ် ဖြစ်သည်။ ထောင့်တစ်ခုကို ဖော်ပြလိုသောအခါ
ကဝခ ထောင့် ဟူ၍ အက္ခရာသုံးလုံးဖြင့် ဖော်ပြလေ့ရှိသည်။
ထောင့်ကိုတဖန် ဟူသော အမှတ်အသားဖြင့် ဖော်ပြလေ့ရှိရာ
ပုံတွင် ပြထားသော ထောင့်ကို ကဝခ (ကဝခ)သို့မဟုတ်
အက္ခရာတစ်လုံး တည်းဖြင့် ဝ (ဝ)ဟု ရေးသား ဖော်ပြလေ့
ရှိကြသည်။
သိပ္ပံ အလိုအားဖြင့် မျက်နှာပြင်တစ်ခုပေါ်တွင်
မျဉ်းတစ်ကြောင်းသည် အခြားတည်မြဲသော
မျဉ်းတစ်ကြောင်းမှ တည်မြဲသော အမှတ်
တစ်ခုကို အစွဲပြု၍ လှည့်ပတ်သွားသောအခါ ထောင့်များ ဖြစ်
လာကြသည်။ အောက်ပါ စက်ဝိုင်းပုံတွင် မြားပြထားသော
လက်တံသည် မျက်နှာပြင်ပေါ်ရှိ တည်မြဲသော မျဉ်းမှစ၍
တည်မြဲသောအမှတ်ကို လှည့်ပတ်သွားနေသည်။ လက်တံရပ်
သောအခါ လက်တံနှင့် မျဉ်းတို့သည် ပုံတွင်ပြထားသည့်အတိုင်း
ထောင့်မှန်ကျလျက် ရှိသည်။ထောင့်မှန်စတုဂံတွင် ဤထောင့်မျိုး
ရှိသည်။ထောင့်များတွင် လက်ယာလှည့်ထောင့်နှင့် လက်ဝဲလှည့်
ထောင့်ဟု ၂ မျိုး ရှိသည်။သို့ရာတွင် ဤနေရာ၌ လက်ဝဲလှည့်
ထောင့်များကိုသာ စဉ်းစားမည်။
 
ထောင့်များကို ကြည့်ရှုစစ်ဆေးသောအခါ ကျွန်ုပ်တို့သည်ကျွန်ုပ်တို့သည်ပထမပုံတွင် လက်တံနှင့် မျဉ်းမြဲတို့ဆောင်သော ထောင့်ငယ် တစ်မျိုးကို တွေ့ကြရ၏။ ဤထောင့်မျိုးကို ထောင့်မှန်ထက်
ငယ်သောကြောင့် ထောင့်ကျဉ်းဟု ခေါ်သည်။ ဒုတိယပုံတွင် မျဉ်းမြဲနှင့်လက်တံတို၏အကြားရှိထောင့်သည် ထောင့်မှန်တစ်ခု ထက် ကြီးသော်လည်း ထောင့်မှန် ၂ ခုထက် ငယ်သည်။
ပထမပုံတွင် လက်တံနှင့် မျဉ်းမြဲတို့ဆောင်သော ထောင့်ငယ်
တစ်မျိုးကို တွေ့ကြရ၏။ ဤထောင့်မျိုးကို ထောင့်မှန်ထက်
ငယ်သောကြောင့် ထောင့်ကျဉ်းဟု ခေါ်သည်။ ဒုတိယပုံတွင်
မျဉ်းမြဲနှင့်လက်တံတို၏အကြားရှိထောင့်သည် ထောင့်မှန်တစ်ခု
ထက် ကြီးသော်လည်း ထောင့်မှန် ၂ ခုထက် ငယ်သည်။
 
ဤထောင့်မျိုးကို ထောင့်ကျယ်ဟု ခေါ်သည်။ မျဉ်းမြဲနှင့် လက်တံတိုသည် တတိယပုံတွင် ဖြောင့်တန်းလျက် ရှိကြ လေသည်။ လက်တံ ၂ ခုတို့ တစ်ဖြောင့်တည်းနေသောကြောင့် ဤထောင့်မျိုးကို ထောင့်ဖြောင့်ဟု ခေါ်သည်။ စတုတ္ထပုံတွင် လက်တံသည် မူလနေရာဖက်သို့ ပြန်သွားသဖြင့် ဤထောင့် မျိုးကို ထောင့်ပြန်ဟု ခေါ်သည်။ဤထောင့်မျိုးသည် ထောင့်မှန်
ဤထောင့်မျိုးကို ထောင့်ကျယ်ဟု ခေါ်သည်။ မျဉ်းမြဲနှင့်
၂ ခုထက်ကြီး၏။ သို့သော် ထောင့်မှန် ၄ ခုထက် ငယ်သည်။ပဉ္စမပုံတွင် လက်တံသည် တစ်ပတ်တိတိလည်ပြီး ဖြစ်သည်။ ဤသို့ တစ်ပတ်လည်၍ ဖြစ်လာသောထောင့်ကို တပတ်
လက်တံတိုသည် တတိယပုံတွင် ဖြောင့်တန်းလျက် ရှိကြ
လေသည်။ လက်တံ ၂ ခုတို့ တစ်ဖြောင့်တည်းနေသောကြောင့်
ဤထောင့်မျိုးကို ထောင့်ဖြောင့်ဟု ခေါ်သည်။ စတုတ္ထပုံတွင်
လက်တံသည် မူလနေရာဖက်သို့ ပြန်သွားသဖြင့် ဤထောင့်
မျိုးကို ထောင့်ပြန်ဟု ခေါ်သည်။ဤထောင့်မျိုးသည် ထောင့်မှန်
၂ ခုထက်ကြီး၏။ သို့သော် ထောင့်မှန် ၄ ခုထက် ငယ်သည်။
ပဉ္စမပုံတွင် လက်တံသည် တစ်ပတ်တိတိလည်ပြီး ဖြစ်သည်။
ဤသို့ တစ်ပတ်လည်၍ ဖြစ်လာသောထောင့်ကို တပတ်
လည်ထောင့်ဟုခေါ်သည်။
 
ရှေးခေတ်လူတို့သည် နက္ခတ်တာရာများ လှည့်ပတ်ခြင်းကို လေ့လာခဲ့စဉ်က တစ်ပတ်လည်ထောင့်၌ ၃၆ဝ ဒီဂရီရှိသည်ဟု တန်ဖိုးထားခဲ့ကြသည်။ ထိုအခါမှအစပြု၍ ယခုတိုင်အောင် ဤ
တန်ဖိုးသည် တည်မြဲလျက်ရှိသည်။ တစ်ပတ်လည်ထောင့်တွင် ၃၆ဝ ဒီဂရီရှိသောကြောင့် တစ်ပတ်ဝက်ရှိသောထောင့် သို့မဟုတ် ထောင့်ဖြောင့်တွင် ဒီဂရီ ၁၈ဝ ရှိ၍ တစ်ပတ်၏
လေ့လာခဲ့စဉ်က တစ်ပတ်လည်ထောင့်၌ ၃၆ဝ ဒီဂရီရှိသည်ဟု
လေးစိတ်တစ်စိတ် သို့မဟုတ် ထောင့်မှန်တွင် ဒီဂရီ ၉ဝ ရှိသည်။ တစ်ဖန် ၁ ဒီဂရီကို မိနစ် ၆ဝ၊ ၁ မိနစ်ကို စက္ကန့် ၆ဝ ဟူ၍ ခွဲစိတ်ထားကြပြန်သဖြင့် ကျွန်ုပ်တို့သည် မည်သည့်
တန်ဖိုးထားခဲ့ကြသည်။ ထိုအခါမှအစပြု၍ ယခုတိုင်အောင် ဤ
ထောင့်မျိုးကိုမဆို အလွယ်တကူ တိကျ မှန်ကန်စွာ တိုင်းတာ နိုင်ပေသည်။
တန်ဖိုးသည် တည်မြဲလျက်ရှိသည်။ တစ်ပတ်လည်ထောင့်တွင်
၃၆ဝ ဒီဂရီရှိသောကြောင့် တစ်ပတ်ဝက်ရှိသောထောင့်
သို့မဟုတ် ထောင့်ဖြောင့်တွင် ဒီဂရီ ၁၈ဝ ရှိ၍ တစ်ပတ်၏
လေးစိတ်တစ်စိတ် သို့မဟုတ် ထောင့်မှန်တွင် ဒီဂရီ ၉ဝ
ရှိသည်။ တစ်ဖန် ၁ ဒီဂရီကို မိနစ် ၆ဝ၊ ၁ မိနစ်ကို စက္ကန့်
၆ဝ ဟူ၍ ခွဲစိတ်ထားကြပြန်သဖြင့် ကျွန်ုပ်တို့သည် မည်သည့်
ထောင့်မျိုးကိုမဆို အလွယ်တကူ တိကျ မှန်ကန်စွာ တိုင်းတာ
နိုင်ပေသည်။
 
== ထောင့်တိုင်းနည်း ==
ထောင့်များကို တိုင်းရာ၌ ထောင့်တိုင်းကရိယာ (အဂ‡လိပ်လို ပရိုထရက်တာ)ကို အသုံးပြုကြရသည်။ပုံတွင်ပါသည့် ကဝခ ကို တိုင်းလိုလျှင် ကဝခတွင် ဝက
ဝက လက်တံသည် နေရာမြဲ သော ဝအ မျဉ်းမှတည်မြဲသော ဝ အမှတ်ကိုပတ်၍ လှည့်သွား ရာ ဝခ နေရာသို့ ရောက်သွားသည်ဟု ယူဆပါ။ ဤသို့ ယူဆလျှင် ဝကကို အစမျဉ်းဟုခေါ်၍ ဝခ ကို အဆုံးမျဉ်းဟု ခေါ်ပါ။ အထက်ပါ ထောင့်ကို တိုင်းလိုသောအခါ ကဝ ကို ဂ အထိဆွဲ၍ ပရိုထရက်တာ၏ ဗဟိုကို ထောင့်ထိပ်ပေါ်တွင် တည့်တည့်ကျနေအောင် တင်ထားပါ။
ပရိုထရက်တာ)ကို အသုံးပြုကြရသည်။ပုံတွင်ပါသည့်
ထိုနောက် ပရိုထရက် တာ၏ အနားကို ကဂ မျဉ်းနှင့် တစ်ထပ်တည်းဖြစ်နေအောင် ရွှေ့ပေးပါ။ထိုအခါ အဆုံးမျဉ်းသည် ပရိုထရက်တာ၏ စက်ဝိုင်းကို မည်သည့်နေရာ၌ ဖြတ်သန်းသည်ကို ကြည့်ပါ။ ဖြတ်သန်းသောနေရာတွင် ရေးမှတ်ထားသော ဒီဂရီသည် ကဝခ ထောင့် မည်မျှကျယ်သည်ကို ပြပေလိမ့်မည်။ ကဝဂ ထောင့် သည် ၁၈ဝ ဒီဂရီ ကျယ်သည်။
ကဝခ ကို တိုင်းလိုလျှင် ကဝခတွင် ဝက
အကယ်၍ ကဝခ ထောင့်သည် ၄ဝ ဒီဂရီဖြစ်လျှင် ခဝဂ = ကဝဂ - ကဝခ = ၁၈ဝ - ၄ဝ = ၁၄ဝ ဒီဂရီဖြစ်၏။ထို့ကြောင့် ပရိုထရက်တာတွင် ၄ဝ ဒီဂရီ မှတ်ထားသောနေရာ၌ ၁၄ဝ ဒီဂရီမှတ်ထားသည်ကိုလည်း တွေ့ရပေမည်။
ဝက လက်တံသည် နေရာမြဲ သော ဝအ မျဉ်းမှတည်မြဲသော
ဝ အမှတ်ကိုပတ်၍ လှည့်သွား ရာ ဝခ နေရာသို့
ရောက်သွားသည်ဟု ယူဆပါ။ ဤသို့ ယူဆလျှင်
ဝကကို အစမျဉ်းဟုခေါ်၍ ဝခ ကို အဆုံးမျဉ်းဟု
ခေါ်ပါ။ အထက်ပါ ထောင့်ကို တိုင်းလိုသောအခါ
ကဝ ကို ဂ အထိဆွဲ၍ ပရိုထရက်တာ၏ ဗဟိုကို
ထောင့်ထိပ်ပေါ်တွင် တည့်တည့်ကျနေအောင် တင်ထားပါ။
ထိုနောက် ပရိုထရက် တာ၏ အနားကို
ကဂ မျဉ်းနှင့် တစ်ထပ်တည်းဖြစ်နေအောင်
ရွှေ့ပေးပါ။ထိုအခါ အဆုံးမျဉ်းသည် ပရိုထရက်တာ၏ စက်ဝိုင်း
ကို မည်သည့်နေရာ၌ ဖြတ်သန်းသည်ကို ကြည့်ပါ။ ဖြတ်
သန်းသောနေရာတွင် ရေးမှတ်ထားသော ဒီဂရီသည်
ကဝခ ထောင့် မည်မျှကျယ်သည်ကို ပြပေလိမ့်မည်။
ကဝဂ ထောင့် သည် ၁၈ဝ ဒီဂရီ ကျယ်သည်။
အကယ်၍ ကဝခ ထောင့်သည် ၄ဝ ဒီဂရီဖြစ်လျှင်
ခဝဂ = ကဝဂ - ကဝခ = ၁၈ဝ - ၄ဝ
= ၁၄ဝ ဒီဂရီဖြစ်၏။ထို့ကြောင့် ပရိုထရက်တာတွင် ၄ဝ ဒီဂရီ
မှတ်ထားသောနေရာ၌ ၁၄ဝ ဒီဂရီမှတ်ထားသည်ကိုလည်း
တွေ့ရပေမည်။
 
တြိဂံဆိုသည်မှာ မျဉ်းဖြောင့်သုံးကြောင်းတို့က လုံခြုံအောင် ဝန်းရံထားသော မျက်နှာပြင်ညီပုံ ဖြစ်သည်။ မျဉ်းတံ၊ ကွန်ပါ၊ ပရိုထရက်တာခေါ် ထောင့်တိုင်းကိရိယာကို အသုံးပြု၍ ကျွန်ုပ်
ဝန်းရံထားသော မျက်နှာပြင်ညီပုံ ဖြစ်သည်။ မျဉ်းတံ၊ ကွန်ပါ၊
ပရိုထရက်တာခေါ် ထောင့်တိုင်းကိရိယာကို အသုံးပြု၍ ကျွန်ုပ်
တို့သည် အောက်ပါ တြိဂံများကို ရေးဆွဲနိုင်သည်။
 
တြိဂံများကို အမျိုးအစား ခွဲခြားရာ၌ အနားကို အကြောင်း ပြု၍ သုံးနားညီတြိဂံ (တြိရန်း)၊ နှစ်နားညီတြိဂံ၊ အနားမညီ တြိဂံဟု ခေါ်ဝေါ်ကြသည်။ အနားမညီသော တြိဂံကို အဂ‡လိပ်
လို စကေလင်းတြိဂံဟုခေါ်သည်။ ထောင့်တစ်ခုကို အကြောင်းပြု၍လည်း ထောင့်မှန်တြိဂံ၊ ထောင့်ကျဉ်းတြိဂံ၊ ထောင့်ကျယ်တြိဂံဟု ခေါ်ကြ၏။ အကယ်၍
ပြု၍ သုံးနားညီတြိဂံ (တြိရန်း)၊ နှစ်နားညီတြိဂံ၊ အနားမညီ
ဝက မျဉ်းကို ဝ အမှတ်တွင် စွဲမြဲစွာထား၍ တစ်ပတ်အပြည့်လှည့်ပေးလျှင် ဝက တွင် သတ် မှတ်ထားသည့် ပ အမှတ်တစ်ခုသည် မျဉ်းကောက်တစ်ခုကို ထင်ပေါ်လာစေလိမ့်မည်။ ထိုမျဉ်းကောက်ကို စက်ဝိုင်းဟု ခေါ်သည်။
တြိဂံဟု ခေါ်ဝေါ်ကြသည်။ အနားမညီသော တြိဂံကို အဂ‡လိပ်
လို စကေလင်းတြိဂံဟုခေါ်သည်။ ထောင့်တစ်ခုကို အကြောင်း
ပြု၍လည်း ထောင့်မှန်တြိဂံ၊ ထောင့်ကျဉ်းတြိဂံ၊ ထောင့်ကျယ်
တြိဂံဟု ခေါ်ကြ၏။ အကယ်၍
ဝက မျဉ်းကို ဝ အမှတ်တွင်
စွဲမြဲစွာထား၍ တစ်ပတ်အပြည့်လှည့်ပေးလျှင်
ဝက တွင် သတ် မှတ်ထားသည့်
ပ အမှတ်တစ်ခုသည် မျဉ်းကောက်တစ်ခုကို
ထင်ပေါ်လာစေလိမ့်မည်။ ထိုမျဉ်းကောက်ကို စက်ဝိုင်းဟု
ခေါ်သည်။
 
ထို့ကြောင့် စက်ဝိုင်းသည် ပိတ်နေသောမျဉ်းကောက်၏ ပုံဖြစ်၍ ထိုမျဉ်းကောက်ပေါ်ရှိ အမှတ်အားလုံးတို့သည် မျက်နှာပြင် တစ်ခုတည်းပေါ်၌ တည်ရှိလျက် မျဉ်းကောက်အတွင်းရှိ
တည်မြဲသော အမှတ်တစ်ခုမှ အကွာအဝေး တူညီကြ၏။ စက်ဝိုင်းဆွဲရန် ကွန်ပါခေါ် ကိရိယာကို အသုံးပြုကြရသည်။ ကွန်ပါ၏ ခြေ ၂ ချောင်းကို အနည်းငယ် ကားထား၍ စက္ကူ
ပုံဖြစ်၍ ထိုမျဉ်းကောက်ပေါ်ရှိ အမှတ်အားလုံးတို့သည် မျက်နှာ
တစ်ရွက်ပေါ်ရှိ ဝ အမှတ်တွင် ခြေတစ်ချောင်းကို တည်မြဲအောင် (ရွေ့မသွားအောင်)ထောက်ထားပါ။ ထိုနောက် ခဲတံပါသောခြေကို လှည့်လိုက်လျှင် စက်ဝိုင်းတစ်ခု ရရှိလာမည်။ ဤစက်ဝိုင်းတွင် ဝ အမှတ်ကို ဗဟိုဟုခေါ်၍ စက်ဝိုင်း၏ နယ်နိမိတ်ဖြစ်သော မျဉ်းကောက်ကို စက်ဝန်းဟု ခေါ်သည်။ ဗဟိုနှင့် စက်ဝန်းပေါ်ရှိ အမှတ်တစ်ခုခုကို ဆက်ထားသည့်
ပြင် တစ်ခုတည်းပေါ်၌ တည်ရှိလျက် မျဉ်းကောက်အတွင်းရှိ
ဝက ခေါ် မျဉ်းကို အချင်းဝက်ဟုခေါ်သည်။ ခဝဂ မျဉ်းကဲ့သို့ ဗဟိုချက်ကိုဖြတ်၍ စက်ဝန်းပေါ်တွင် အဆုံးသတ်သောမျဉ်းကို အချင်းဟု ခေါ်သည်။ အချင်းသည် စက်ဝိုင်းကို နှစ်ခြမ်း အညီအမျှ ပိုင်းသည်။ စက်ဝိုင်းတစ်ခြမ်းစီကို စက်ဝိုင်းခြမ်းဟု ခေါ်သည်။ စက်ဝန်းပိုင်းတွင် စက်ဝန်း၏ အစိတ်အပိုင်းတစ်ခု ဖြစ်သည့် အချင်းဝက်နှစ်ခုကြားရှိ စက်ဝိုင်း၏ အစိတ်အပိုင်းကို စက်ဝိုင်းစိတ်ဟု ခေါ်သည်။ စက်ဝန်းပိုင်းကို ဂျီဩမေတြီတွင် အတို နောက်တစ်နည်းဖြင့်ဟူ၍ ရေးသားလေ့ ရှိကြသည်။
တည်မြဲသော အမှတ်တစ်ခုမှ အကွာအဝေး တူညီကြ၏။
ကခ ၏ အဓိပ္ပာယ်မှာ စက်ဝိုင်းပိုင်း ကခ ဖြစ်၏။စက်ဝိုင်းတိုင်း၌ စက်ဝိုင်းနှင့် အချင်း၏အချိုးသည်တစ်သမတ်တည်းရှိ၍ ထိုအချိုးကို ပိုင်( )ဟူသောဂရိအမှတ်အသားဖြင့် ရေးသား ဖော်ပြလေ့ရှိသည်။ တန်ဖိုးမှာ ၃ ဒသမ ၁၄၁၆ ခန့် ဖြစ်သည်။ စက်ဝိုင်းတစ်ခုတွင် စက်ဝန်း၏ အရှည် ၂ နှင့် ညီမျှသည်
စက်ဝိုင်းဆွဲရန် ကွန်ပါခေါ် ကိရိယာကို အသုံးပြုကြရသည်။
ဟူသော ပုံသေတွက်နည်းဖြင့်၎င်း၊ ဧရိယာသည် မ နှင့် ညီမျှသည်ဟူသော ပုံသေတွက်နည်းဖြင့်၎င်း၊
ကွန်ပါ၏ ခြေ ၂ ချောင်းကို အနည်းငယ် ကားထား၍ စက္ကူ
တွက်ချက် သိရှိနိုင်သည်။ (သည် စက်ဝန်းပိုင်း၏ အချင်းဝက်ဖြစ်၏။)
တစ်ရွက်ပေါ်ရှိ ဝ အမှတ်တွင် ခြေတစ်ချောင်းကို တည်မြဲ
အောင် (ရွေ့မသွားအောင်)ထောက်ထားပါ။ ထိုနောက် ခဲတံ
ပါသောခြေကို လှည့်လိုက်လျှင် စက်ဝိုင်းတစ်ခု ရရှိလာမည်။
ဤစက်ဝိုင်းတွင် ဝ အမှတ်ကို ဗဟိုဟုခေါ်၍ စက်ဝိုင်း၏ နယ်
နိမိတ်ဖြစ်သော မျဉ်းကောက်ကို စက်ဝန်းဟု ခေါ်သည်။
ဗဟိုနှင့် စက်ဝန်းပေါ်ရှိ အမှတ်တစ်ခုခုကို ဆက်ထားသည့်
ဝက ခေါ် မျဉ်းကို အချင်းဝက်ဟုခေါ်သည်။
ခဝဂ မျဉ်းကဲ့သို့ ဗဟိုချက်ကိုဖြတ်၍ စက်ဝန်းပေါ်တွင
် အဆုံးသတ်သောမျဉ်းကို အချင်းဟု ခေါ်သည်။
အချင်းသည် စက်ဝိုင်းကို နှစ်ခြမ်း အညီ
အမျှ ပိုင်းသည်။ စက်ဝိုင်းတစ်ခြမ်းစီကို စက်ဝိုင်းခြမ်းဟု ခေါ်
သည်။ စက်ဝန်းပိုင်းတွင် စက်ဝန်း၏ အစိတ်အပိုင်းတစ်ခု
ဖြစ်သည့် အချင်းဝက်နှစ်ခုကြားရှိ စက်ဝိုင်း၏ အစိတ်အပိုင်းကို
စက်ဝိုင်းစိတ်ဟု ခေါ်သည်။ စက်ဝန်းပိုင်းကို ဂျီဩမေတြီတွင်
အတို နောက်တစ်နည်းဖြင့်ဟူ၍ ရေးသားလေ့ ရှိကြသည်။
ကခ ၏ အဓိပ္ပာယ်မှာ စက်ဝိုင်းပိုင်း ကခ ဖြစ်၏။
စက်ဝိုင်းတိုင်း၌ စက်ဝိုင်းနှင့် အချင်း၏အချိုးသည်
တစ်သမတ်တည်းရှိှ၍ ထိုအချိုးကို ပိုင်( )ဟူသော
ဂရိအမှတ်အသားဖြင့် ရေးသား ဖော်ပြလေ့ရှိသည်။
တန်ဖိုးမှာ ၃ ဒသမ ၁၄၁၆ ခန့် ဖြစ်သည်။
စက်ဝိုင်းတစ်ခုတွင် စက်ဝန်း၏ အရှည် ၂ နှင့် ညီမျှသည်
ဟူသော ပုံသေတွက်နည်းဖြင့်၎င်း၊ ဧရိယာသည်
မ နှင့် ညီမျှသည်ဟူသော ပုံသေတွက်နည်းဖြင့်၎င်း၊
တွက်ချက် သိရှိနိုင်သည်။
(သည် စက်ဝန်းပိုင်း၏ အချင်းဝက်ဖြစ်၏။)
 
ဖြတ်မျဉ်းကြောင့် ဖြစ်ပေါ်လာသော ထောင့်များ။ ။
မျဉ်း ၂ကြောင်းကိုဖြစ်စေ၊ ထိုထက်များသော မျဉ်းတို့ကို ဖြစ်စေ ဖြတ်သန်းသွားသော မျဉ်းဖြောင့်ကို ဖြတ်မျဉ်းဟု ခေါ် သည်။ ပုံတွင် လအ သည် ပဖ နှင့် ဗမ မျဉ်းနှစ်ကြောင်းကို ဖြတ်သွားသည့် ဖြတ်မျဉ်းတစ်ကြောင်း ဖြစ်သည်။ ပဖနှင့် ဗမတို့ အပြင်ဖက်တွင် ကျရောက်နေသည့် ကာ၊ ကဲ၊ ခိ၊ ခု ထောင့်များကို အပြင်ထောင့်များဟုခေါ်၍ အတွင်းဖက်တွင် ကျရောက်နေသည့် ကိ၊ ကု၊ ခါ၊ ခဲ ထောင့်များကို အတွင်း ထောင့်များဟု ခေါ်သည်။ ဖြတ်မျဉ်း၏ တစ်ဖက်တည်းရှိ အပြင်ထောင့် ကဲနှင့် အတွင်းထောင့် ခဲကို သက်ဆိုင်ရာ
မျဉ်း ၂ကြောင်းကိုဖြစ်စေ၊ ထိုထက်များသော မျဉ်းတို့ကို
ထောင့်များဟု ခေါ်သည်။ အခြားသက်ဆိုင်သောထောင့်များမှာ ကာ နှင့် ခါ၊ ခိနှင့် ကိ၊ ခုနှင့် ကုတို့ ဖြစ်ကြသည်။ ကိနှင့် ခဲ၊ ကု နှင့် ခါ ထောင့်များကိုမူကား
ဖြစ်စေ ဖြတ်သန်းသွားသော မျဉ်းဖြောင့်ကို ဖြတ်မျဉ်းဟု ခေါ်
ဝိသမသတ်ထောင့်များဟု ခေါ်သည်။ အကယ်၍ ပဖနှင့် ဗမသည် မျဉ်းပြိုင်များဖြစ်လျှင် အောက်ပါ အချက်များကို သိရမည်ဖြစ်သည်။
သည်။ ပုံတွင် လအ သည် ပဖ နှင့် ဗမ မျဉ်းနှစ်ကြောင်းကို
ဖြတ်သွားသည့် ဖြတ်မျဉ်းတစ်ကြောင်း ဖြစ်သည်။
ပဖနှင့် ဗမတို့ အပြင်ဖက်တွင် ကျရောက်နေသည့်
ကာ၊ ကဲ၊ ခိ၊ ခု ထောင့်များကို အပြင်ထောင့်များဟု
ခေါ်၍ အတွင်းဖက်တွင် ကျရောက်နေသည့်
ကိ၊ ကု၊ ခါ၊ ခဲ ထောင့်များကို အတွင်း
ထောင့်များဟု ခေါ်သည်။ ဖြတ်မျဉ်း၏ တစ်ဖက်တည်းရှိ
အပြင်ထောင့် ကဲနှင့် အတွင်းထောင့် ခဲကို သက်ဆိုင်ရာ
ထောင့်များဟု ခေါ်သည်။ အခြားသက်ဆိုုင်သောထောင့်များမှာ
ကာ နှင့် ခါ၊ ခိနှင့် ကိ၊ ခုနှင့် ကုတို့ ဖြစ်ကြသည်။
ကိနှင့် ခဲ၊ ကု နှင့် ခါ ထောင့်များကိုမူကား
ဝိသမသတ်ထောင့်များဟု ခေါ်သည်။ အကယ်၍
ပဖနှင့် ဗမသည် မျဉ်းပြိုင်များဖြစ်လျှင်
အောက်ပါ အချက်များကို သိရမည်ဖြစ်သည်။
 
# သက်ဆိုင်ရာထောင့်ချင်း ညီသည်။
# ဝိသမသတ်ထောင့်ချင်း ညီသည်။
# ဖြတ်မျဉ်းတဖက်တည်းရှိ အတွင်းထောင့် ၂ ခုတို့၏
ပေါင်းရကိန်းသည် ထောင့်မှန် ၂ ခုနှင့် ညီသည်။ အပြန်အလှန် ကိုဆိုသော် ပဖနှင့် ဗမတို့ကို ဖြတ်မျဉ်းတစ်ခုဖြတ်၍ သက်ဆိုင်ရာထောင့်များ ညီလျှင်ဖြစ်စေ၊ ဝိသမသတ်ထောင့်များ ညီလျှင် ဖြစ်စေ၊ သို့မဟုတ် ဖြတ်မျဉ်းတစ်ဖက်တည်းရှိ အတွင်းထောင့် ၂ ခုတို့၏ ပေါင်းရကိန်းသည် ထောင့်မှန်နှစ်ခုနှင့်ညီ လျှင်ဖြစ်စေ၊ ပဖ နှင့် ဗမ တို့သည် မျဉ်းပြိုင်များ ဖြစ်ကြသည်ဟု ဆိုရပေမည်။
ပေါင်းရကိန်းသည် ထောင့်မှန် ၂ ခုနှင့် ညီသည်။ အပြန်အလှန်
ကိုဆိုသော် ပဖနှင့် ဗမတို့ကို ဖြတ်မျဉ်းတစ်ခုဖြတ်၍ သက်ဆိုင်
ရာထောင့်များ ညီလျှင်ဖြစ်စေ၊ ဝိသမသတ်ထောင့်များ ညီလျှင်
ဖြစ်စေ၊ သို့မဟုတ် ဖြတ်မျဉ်းတစ်ဖက်တည်းရှိ အတွင်းထောင့်
၂ ခုတို့၏ ပေါင်းရကိန်းသည် ထောင့်မှန်နှစ်ခုနှင့်ညီ လျှင်ဖြစ်
စေ၊ ပဖ နှင့် ဗမ တို့သည် မျဉ်းပြိုင်များ ဖြစ်ကြသည်ဟု
ဆိုရပေမည်။
 
== စတုဂံများ ==
စတုဂံဆိုသည်မှာ အနား ၄ ခုရှိသော ပုံဖြစ်သည်။အကယ်၍ မျက်နှာချင်းဆိုင် အနားချင်းပြိုင်နေကြလျှင် ထိုပုံကို အနားပြိုင်စတုဂံဟု ခေါ်သည်။ အနားပြိုင်စတုဂံနှင့် စပ်လျဉ်း၍ မှတ်သားရန် အချက်တစ်ခုမှာ မျဉ်းပြိုင်နှစ်စုံသည် တစ်စုံနှင့် တစ်စုံ ဖြတ်သောအခါ အနားပြိုင် စတုဂံတစ်ခုကို ဖြစ်ပေါ်လာစေသည်ဟူသော အချက်ပင် ဖြစ်သည်။ အနားပြိုင် စတုဂံတွင် ထောင့်တစ်ခုသည် ထောင့်မှန်ဖြစ်လျှင် ထိုပုံကို ထောင့်မှန် စတုဂံ ဖြစ်သည်။ ရွံးဗတ်သည် ၄ နားညီ အနားပြိုင် စတုဂံ ဖြစ်၏။
စတုဂံဆိုသည်မှာ အနား ၄ ခုရှိသော ပုံဖြစ်သည်။အကယ်၍
မျက်နှာချင်းဆိုင် အနားချင်းပြိုင်နေကြလျှင် ထိုပုံကို အနားပြိုင်
စတုဂံဟု ခေါ်သည်။ အနားပြိုင်စတုဂံနှင့် စပ်လျဉ်း၍ မှတ်သား
ရန် အချက်တစ်ခုမှာ မျဉ်းပြိုင်နှစ်စုံသည် တစ်စုံနှင့် တစ်စုံ
ဖြတ်သောအခါ အနားပြိုင် စတုဂံတစ်ခုကို ဖြစ်ပေါ်လာစေ
သည်ဟူသော အချက်ပင် ဖြစ်သည်။ အနားပြိုင် စတုဂံတွင်
ထောင့်တစ်ခုသည် ထောင့်မှန်ဖြစ်လျှင် ထိုပုံကို ထောင့်မှန်
စတုဂံ ဖြစ်သည်။ ရွံးဗတ်သည် ၄ နားညီ အနားပြိုင် စတုဂံ
ဖြစ်၏။
 
ဂျီဩမေတြီတွင် အောက်ပါဝေါဟာရများကို အမြဲလိုပင် တွေ့ကြရသဖြင့် ယင်းတို့၏ အဓိပ္ပာယ်ကို သေချာစွာ သိထားရပေလိမ့်မည်။
တွေ့ကြရသဖြင့် ယင်းတို့၏ အဓိပ္ပာယ်ကို သေချာစွာ သိထားရ
ပေလိမ့်မည်။
 
== အဆို ==
အဆိုတွင် အဓိပ္ပာယ် နှစ်မျိုး ရှိသည်။ သီအိုရမ်ကိုသော် ၎င်း၊ ပရော်ဗလမ်(ပြဿနာကို)သော်၎င်း အဆိုဟု ခေါ်သည်။
၎င်း၊ ပရော်ဗလမ်(ပြဿနာကို)သော်၎င်း အဆိုဟု ခေါ်သည်။
 
== သီအိုရမ် ==
သီအိုရမ်သည် သက်သေပြန်ရန်လိုသော သစ္စာ(မှန်ကန်ချက်) တစ်ရပ်ဖြစ်၍ ဂျီဩမေတြီတွင် ဤကဲ့သို့သော် သစ္စာအသီးသီး မှန်ကန်ကြောင်းကို သက်သေပြထားသည်။
တစ်ရပ်ဖြစ်၍ ဂျီဩမေတြီတွင် ဤကဲ့သို့သော် သစ္စာအသီးသီး
မှန်ကန်ကြောင်းကို သက်သေပြထားသည်။
 
== ပရော်ဗလမ် ==
ပရော်ဗလမ်သည် တစ်စုံတစ်ရာ ဆောက်လုပ်ရန် သို့မဟုတ် ရေးဆွဲရန်လိုသော ပြဿနာ ဖြစ်သည်။ ပမာအားဖြင့် ပေးထားသော မျဉ်းရှိ အမှတ်တစ်ခု၌ ပေးထားသောထောင့်နှင့် ညီသည့် ထောင်တစ်ခုကို ရေးဆွဲရန်မှာ ပြဿနာတစ်ရပ် ဖြစ်သည်။
ရေးဆွဲရန်လိုသော ပြဿနာ ဖြစ်သည်။ ပမာအားဖြင့် ပေးထား
သော မျဉ်းရှိ အမှတ်တစ်ခု၌ ပေးထားသောထောင့်နှင့် ညီသည့်
ထောင်တစ်ခုကို ရေးဆွဲရန်မှာ ပြဿနာတစ်ရပ် ဖြစ်သည်။
 
== ကော်ရော်လာရီ ==
အဆိုတစ်ခု၏ မှန်ကန်ချက်မှ ပေါ်ပေါက်လာသော အခြား မှန်ကန်ချက်သည် ကော်ရော်လာရီ ဖြစ်သည်။ ပမာအားဖြင့် တြိဂံတစ်ခု၏ ထောင့်တစ်ခုသည် ထောင့်မှန်ဖြစ်လျှင် ကျန် ထောင့် ၂ ခုတို့၏ ပေါင်းရကိန်းသည် ထောင့်မှန်တစ်ခု ဖြစ်၏ ဟူသော မှန်ကန်ချက်မှာ ကော်ရော်လာရီ ဖြစ်၏။
အဆိုတစ်ခု၏ မှန်ကန်ချက်မှ ပေါ်ပေါက်လာသော အခြား
မှန်ကန်ချက်သည် ကော်ရော်လာရီ ဖြစ်သည်။ ပမာအားဖြင့်
တြိဂံတစ်ခု၏ ထောင့်တစ်ခုသည် ထောင့်မှန်ဖြစ်လျှင် ကျန်
ထောင့် ၂ ခုတို့၏ ပေါင်းရကိန်းသည် ထောင့်မှန်တစ်ခု ဖြစ်၏
ဟူသော မှန်ကန်ချက်မှာ ကော်ရော်လာရီ ဖြစ်၏။
 
အဘယ်ကြောင့်ဆိုသော် ထိုမှန်ကန်ချက်ကား တြိဂံတစ်ခုရှိ ထောင့် ၃ ခုတို့၏ ပေါင်းရကိန်းသည် ထောင့်မှန် ၂ ခုနှင့် ညီသည်ဟူသော အဆိုပေါ်တွင် အမှီပြုသောကြောင့်ပေတည်း။
ထောင့် ၃ ခုတို့၏ ပေါင်းရကိန်းသည် ထောင့်မှန် ၂ ခုနှင့်
ညီသည်ဟူသော အဆိုပေါ်တွင် အမှီပြုသောကြောင့်ပေတည်း။
 
== ပေးထားချက် ==
သီအိုရမ်တွင် မှန်ကန်သည်ဟု ယူဆထားသော အချက်များ နှင့် ကြိုတင်တိုင်းတာထားသော အရာများကို ပေးထားချက်များ ဟု ခေါ်သည်။
နှင့် ကြိုတင်တိုင်းတာထားသော အရာများကို ပေးထားချက်များ
ဟု ခေါ်သည်။
 
== သက်သေပြရန်အချက် ==
သက်သေပြရန် အချက်တိုသည်ကား သက်သေပြရန်လိုသော အချက် ဖြစ်သည်။
အချက် ဖြစ်သည်။
 
== အပြန်အလှန် သီအိုရမ် ==
သီအိုရမ်တစ်ခု၏ ပေးထားချက်နှင့် သက်သေပြန်ရန်အချက် တို့သည် အခြားသီအိုရမ်တစ်ခု၏ သက်သေပြရန် အချက်တို့သည် ပေးထားချက်အသီးသီးတို့နှင့် အပြန်အလှန် တူညီနေ
လျှင် ထိုသီအိုရမ် ၂ ခုကို အပြန်အလှန် သီအိုရမ်ဟု ခေါ် သည်။ ပမာအားဖြင့် တြိဂံတစ်ခု၏ အနား ၂ ဖက်သည် တစ်ခုနှင့်တစ်ခု ညီကြလျှင် ထိုအနား ၂ ဖက်နှင့် မျက်နှာချင်းဆိုင်သည် ထောင့်များ တစ်ခုနှင့်တစ်ခု ညီမျှကြလျှင် ထိုထောင့်များနှင့် မျက်နှာချင်း ဆိုင်နေသော အနား များသည် တစ်ခုနှင့်တစ်ခု တူညီကြသည်ဟူသော သီအိုရမ်တို့သည် အပြန်အလှန် ဖြစ်ကြသည်။
တို့သည် အခြားသီအိုရမ်တစ်ခု၏ သက်သေပြရန် အချက်တို့
သည် ပေးထားချက်အသီးသီးတို့နှင့် အပြန်အလှန် တူညီနေ
လျှင် ထိုသီအိုရမ် ၂ ခုကို အပြန်အလှန် သီအိုရမ်ဟု ခေါ်
သည်။ ပမာအားဖြင့် တြိဂံတစ်ခု၏ အနား ၂ ဖက်သည်
တစ်ခုနှင့်တစ်ခု ညီကြလျှင် ထိုအနား ၂ ဖက်နှင့်
မျက်နှာချင်းဆိုင်သည် ထောင့်များ တစ်ခုနှင့်တစ်ခု ညီမျှကြ
လျှင် ထိုထောင့်များနှင့် မျက်နှာချင်း ဆိုင်နေသော အနား
များသည် တစ်ခုနှင့်တစ်ခု တူညီကြသည်ဟူသော သီအိုရမ်
တို့သည် အပြန်အလှန် ဖြစ်ကြသည်။
 
သီအိုရမ်များကို သက်သေပြသော နည်းအမျိုးမျိုး ရှိသည်။ ထိုနည်းများကား တိုက်ရိုက်နည်းဖြင့် သက်သေပြနည်း၊ ပုံထပ်သက်သေပြနည်း၊ ထပ်တူညီမျှသော တြိဂံများဖြင့် သက်သေ ပြနည်း၊ ပယ်နည်းဖြင့် သက်သေပြနည်း၊ သွယ်ဝိုက် နည်းဖြင့် သက်သေပြနည်းနှင့် ပရိစ္ဆေဒနည်း (ဝါ)အနာလစ်စစ်နည်းတို့ ဖြစ်ကြသည်။
သီအိုရမ်များကို သက်သေပြသော နည်းအမျိုးမျိုး ရှိသည်။
ထိုနည်းများကား တိုက်ရိုက်နည်းဖြင့် သက်သေပြနည်း၊ ပုံထပ်
သက်သေပြနည်း၊ ထပ်တူညီမျှသော တြိဂံများဖြင့် သက်သေ
ပြနည်း၊ ပယ်နည်းဖြင့် သက်သေပြနည်း၊ သွယ်ဝိုက် နည်းဖြင့်
သက်သေပြနည်းနှင့် ပရိစ္ဆေဒနည်း (ဝါ)အနာလစ်စစ်နည်းတို့
ဖြစ်ကြသည်။
 
ဂျီဩမေတြီပရော်ဗလမ်များကို ဖြေရှင်းရာ၌ အရေးအကြီးဆုံး အချက်များမှာ အောက်ပါအတိုင်း ဖြစ်သည်။ အဆိုများကို ရှေးဦးစွာ နားလည်အောင်၊ မှတ်မိအောင် ဖတ်ထားကျက်ထား
ရန် ဖြစ်သည်။ ထိုနောက် ပရော်ဗလမ်၏ သဘောကို နားလည် အောင် ၂ ကြိမ်၊ ၃ ကြိမ်ဖတ်ပါ။နားလည်သောအခါ ပြတ်သားသောပုံကို ရေးဆွဲပါ။ အကယ်၍ ရေးဆွဲရမည့်ပုံသည် တြိဂံဖြစ်လျှင် ပေးထားချက်မရှိပါက နှစ်နားညီ သို့မဟုတ် သုံးနားညီတြိဂံမျိုးကို မဆွဲဘဲ စကေလင်းခေါ် အနားမညီ တြိဂံမျိုးကိုသာ ရေးဆွဲရမည်။ ပရော်ဗလမ်ကို မတွက်ချက် မဖြေရှင်းမီ ပေးထားချက်နှင့် သက်သေပြရန်အချက်ကို သီးသန့် ရေးသားဖော်ပြရမည်။ တစ်ခါတစ်ရံ သက်သေပြရာ၌ ဆောက်လုပ်ချက်များ ပြုလုပ်ရန် လိုသည်။ ပုံများကိုရေးဆွဲ၍ လိုအပ်သည့် ဆောက်လုပ်ချက်များကို ပြုလုပ်ပြီးစီးသောအခါ မိမိသင်ကြား မှတ်သားထားသော အဆိုစသည့် အချက်အလက်များကို အကိုးအကား ပြုကာ သာဓကပြရသည်။
အချက်များမှာ အောက်ပါအတိုင်း ဖြစ်သည်။ အဆိုများကို
ရှေးဦးစွာ နားလည်အောင်၊ မှတ်မိအောင် ဖတ်ထားကျက်ထား
ရန် ဖြစ်သည်။ ထိုနောက် ပရော်ဗလမ်၏ သဘောကို နားလည်
အောင် ၂ ကြိမ်၊ ၃ ကြိမ်ဖတ်ပါ။နားလည်သောအခါ ပြတ်သား
သောပုံကို ရေးဆွဲပါ။ အကယ်၍ ရေးဆွဲရမည့်ပုံသည် တြိဂံဖြစ်
လျှင် ပေးထားချက်မရှိပါက နှစ်နားညီ သို့မဟုတ် သုံးနားညီ
တြိဂံမျိုးကို မဆွဲဘဲ စကေလင်းခေါ် အနားမညီ တြိဂံမျိုးကိုသာ
ရေးဆွဲရမည်။ ပရော်ဗလမ်ကို မတွက်ချက် မဖြေရှင်းမီ ပေး
ထားချက်နှင့် သက်သေပြရန်အချက်ကို သီးသန့် ရေးသားဖော်ပြ
ရမည်။ တစ်ခါတစ်ရံ သက်သေပြရာ၌ ဆောက်လုပ်ချက်များ
ပြုလုပ်ရန် လိုသည်။ ပုံများကိုရေးဆွဲ၍ လိုအပ်သည့် ဆောက်
လုပ်ချက်များကို ပြုလုပ်ပြီးစီးသောအခါ မိမိသင်ကြား မှတ်သား
ထားသော အဆိုစသည့် အချက်အလက်များကို အကိုးအကား
ပြုကာ သာဓကပြရသည်။
 
ဂျီဩမေတြီ ၂ မျိုးရှိသည်။ အထက်တွင် ရေးသားခဲ့သည်ရေးသားခဲ့သည်များမှာ ပလိန်းဂျီဩမေတြီနှင့်သာ သက်ဆိုင်သည်။ အခြားတစ်မျိုးမှာ ဆောလစ်ဂျီဩမေတြီ ဖြစ်၏။
များမှာ ပလိန်းဂျီဩမေတြီနှင့်သာ သက်ဆိုင်သည်။ အခြား
တစ်မျိုးမှာ ဆောလစ်ဂျီဩမေတြီ ဖြစ်၏။
 
ဂျီဩမေတြီသဘောအရ အစိုင်အခဲဲသာလျှင်အစိုင်အခဲသာလျှင် ထုပုံဖြစ်သည် မဟုတ်။ ကလေးများကစားသော ဆပ်ပြာပူဖောင်းသည်လည်းထုပုံဖြစ်သည်။ အဘယ်ကြောင့်ဆိုသော ဟင်းလင်းပြင် (လဟာ
ပြင်)တွင် နေရာယူသော မည်သည့်အရာဝတ္ထုကိုမဆို ထုပုံဟုခေါ်သောကြောင့်တည်း။ ထုပုံတစ်ခု၏ မျက်နှာပြင်သည် ထုံပုံနှင့်ပတ်ဝန်းကျင် လဟာပြင်တို့ကို ခြားနားထားသည်။
မဟုတ်။ ကလေးများကစားသော ဆပ်ပြာပူဖောင်းသည်လည်း
ထုပုံတစ်ခု၏ အရောင်အဆင်း အလေးချိန်ကို စစ်ဆေးခြင်း သည် ဂျီဩမေတြီ၏ အလုပ်မဟုတ်ချေ။ ဂျီဩမေတြီ၏ အလုပ်ကား ထုံပုံတစ်ခု၏ သဏ္ဌာန်နှင့် ပမာန(ထုထည်)တို့ကို ကြည့်ရှုနှိုင်းယှဉ်သော အလုပ်သာ ဖြစ်သည်။ ပေးထားသည့် ထုပုံ၏ အရွယ်သည် ကုဗလက်မကဲ့သို့သော ပုံစံအတိုင်းအတာ ၏ အဆပေါင်းမည်မျှရှိသည်ကို ရှာဖွေလျှင် ပေးထားသောထုပုံ နှင့် ကုဗလက်မတို့ကို နှိုင်းယှဉ်ရာ ရောက်ပေသည်။ ထိုကြောင့် ပမာဏကို နှိုင်းယှဉ်ခြင်းသည် ပမာဏကိုတိုင်းတာခြင်းနှင့်လည်း အဓိပ္ပာယ်တူပေသည်။ မျက်နှာပြင်ကို တိုင်းတာရာတွင် အလျား၊ အနံကိုသာ တိုင်းတာရန် လိုသည်။ ထုပုံတိုင်းတာရာ၌ မူကား အလျား၊ အနံအပြင် အမြင့်ကိုလည်း တိုင်းတာရန် လိုပေသည်။ ဤ တိုင်းတာမှုကြောင့် ဆောလစ်ဂျီဩမေတြီသည် မင်ဆူရေရှင်းခေါ် ပမာဏသချ‡ာနှင့် နီးကပ်စွာ ဆက်သွယ်လျက် ရှိသည်။
ထုပုံဖြစ်သည်။ အဘယ်ကြောင့်ဆိုသော ဟင်းလင်းပြင် (လဟာ
ပြင်)တွင် နေရာယူသော မည်သည့်အရာဝတ္ထုကိုမဆို ထုပုံဟု
ခေါ်သောကြောင့်တည်း။ ထုပုံတစ်ခု၏ မျက်နှာပြင်သည်
ထုံပုံနှင့်ပတ်ဝန်းကျင် လဟာပြင်တို့ကို ခြားနားထားသည်။
ထုပုံတစ်ခု၏ အရောင်အဆင်း အလေးချိန်ကို စစ်ဆေးခြင်း
သည် ဂျီဩမေတြီ၏ အလုပ်မဟုတ်ချေ။ ဂျီဩမေတြီ၏
အလုပ်ကား ထုံပုံတစ်ခု၏ သဏ္ဌာန်နှင့် ပမာန(ထုထည်)တို့ကို
ကြည့်ရှုနှိုင်းယှဉ်သော အလုပ်သာ ဖြစ်သည်။ ပေးထားသည့်
ထုပုံ၏ အရွယ်သည် ကုဗလက်မကဲ့သို့သော ပုံစံအတိုင်းအတာ
၏ အဆပေါင်းမည်မျှရှိသည်ကို ရှာဖွေလျှင် ပေးထားသောထုပုံ
နှင့် ကုဗလက်မတို့ကို နှိုင်းယှဉ်ရာ ရောက်ပေသည်။ ထိုကြောင့်
ပမာဏကို နှိုင်းယှဉ်ခြင်းသည် ပမာဏကိုတိုင်းတာခြင်းနှင့်လည်း
အဓိပ္ပာယ်တူပေသည်။ မျက်နှာပြင်ကို တိုင်းတာရာတွင်
အလျား၊ အနံကိုသာ တိုင်းတာရန် လိုသည်။ ထုပုံတိုင်းတာရာ၌
မူကား အလျား၊ အနံအပြင် အမြင့်ကိုလည်း တိုင်းတာရန်
လိုပေသည်။ ဤ တိုင်းတာမှုကြောင့် ဆောလစ်ဂျီဩမေတြီ
သည် မင်ဆူရေရှင်းခေါ် ပမာဏသချ‡ာနှင့် နီးကပ်စွာ
ဆက်သွယ်လျက် ရှိသည်။
 
မကြာမကြာ တွေ့မြင်ရသော ထုပုံတို့ကို အထက်တွင် ရေးဆွဲထားသည်။ ဤထုပုံ အသီးသီး၏အဓိပ္ပာယ် သို့မဟုတ် ဂုဏ်ထူးဝိသေသကိုလည်း ရေးသားဖော်ပြထားသည်။
ရေးဆွဲထားသည်။ ဤထုပုံ အသီးသီး၏အဓိပ္ပာယ် သို့မဟုတ်
ဂုဏ်ထူးဝိသေသကိုလည်း ရေးသားဖော်ပြထားသည်။
 
ကုဗတုံး၏ မျက်နှာ ၆ ခုလုံးသည် စတုရန်းများ ဖြစ်ကြဖြစ်ကြသည်။ မျက်နှာတစ်ခုနှင့် တစ်ခု ဖြတ်သောနေရာသည် ကုဗတုံး၏ အနားတစ်ခု ဖြစ်သည်။ အနား ၃ ခုဆုံရာ အမှတ်သည် ထောင့်စွန်းဖြစ်သည်။
သည်။ မျက်နှာတစ်ခုနှင့် တစ်ခု ဖြတ်သောနေရာသည် ကုဗ
တုံး၏ အနားတစ်ခု ဖြစ်သည်။ အနား ၃ ခုဆုံရာ အမှတ်
သည် ထောင့်စွန်းဖြစ်သည်။
 
အပြိုင်စတုဂံတုံးမှန်၏ မျက်နှာ ၆ ခုလုံးသည် ထောင့်မှန်ထောင့်မှန်စတုဂံများ ဖြစ်ကြသည်။ ထိုကြောင့် ဤထုပုံ၏ အလျား၊ အနံ၊ အမြင့်တို့သည် တစခုနှင့်တစ်ခု မတူညီကြချေ။ (ကုဗတုံးနှင့်
စတုဂံများ ဖြစ်ကြသည်။ ထိုကြောင့် ဤထုပုံ၏ အလျား၊ အနံ၊
အမြင့်တို့သည် တစခုနှင့်တစ်ခု မတူညီကြချေ။ (ကုဗတုံးနှင့်
နှိုင်းယှဉ်ပါ)။
 
အပြိုင်စတုဂံတုံးယိုင်၏ မျက်နှာများသည် အနားပြိုင်စတုဂံ များ ဖြစ်ကြသည်။ ထိုကြောင့် ယင်းကို အရွယ်တူ ထောင့်မှန်စတုဂံတုံးနှင့် ဂျီဩမေတြီနည်းအရ နှိုင်းယှဉ်ပြီးသာလျှင်
များ ဖြစ်ကြသည်။ ထိုကြောင့် ယင်းကို အရွယ်တူ ထောင့်မှန်
စတုဂံတုံးနှင့် ဂျီဩမေတြီနည်းအရ နှိုင်းယှဉ်ပြီးသာလျှင်
ယင်း၏ပမာဏကို တိုင်းတာနိုင်သည်။
 
ဆလင်ဒါ(ဒလိမ့်)။ ။
ထောင့်မှန်စတုဂံပုံရှိ စက္ကူတစ်ချပ်ကို ကွေးလိုက်လျှင် ဆလင်ဒါတစ်ခု ဖြစ်လာသည်။
ဆလင်ဒါတစ်ခု ဖြစ်လာသည်။
 
အဝိုင်းထုချွန်။ ။
စက်ဝိုင်းစိတ်တစ်ခုကို ကွေးလိုက်လျှင် ထုချွန်တစ်ခု ဖြစ် လာသည်။
လာသည်။
 
ပိရမစ်(ထုချွန်)။ ။
စက္ကူတစ်ချပ်ကို ကြယ်ပုံည|ပ်ပြီးနောက် အစွန်းထွက်နေသော တြိဂံများကို အောက်ခံအနားတလျှောက် ချိုးကာ ယင်းတို့၏ ထိပ်များကို စုလိုက်သောအခါ ပိရမစ်ပုံဖြစ်လာသည်။
တြိဂံများကို အောက်ခံအနားတလျှောက် ချိုးကာ ယင်းတို့၏
ထိပ်များကို စုလိုက်သောအခါ ပိရမစ်ပုံဖြစ်လာသည်။
 
စက်ဝိုင်းလုံးကို လုပ်ပြရန် ခဲယဉ်းသည်။ သို့သော် စက်ဝိုင်း
ခြမ်းတစ်ခုကို အချင်းမဏ္ဍိုင်ပြုကာ လှည့်လိုက်လျှင် စက်ဝိုင်း
လုံး ပုံတစ်ခု ထွက်ပေါ်လာသည်။
 
စက်ဝိုင်းလုံးကို လုပ်ပြရန် ခဲယဉ်းသည်။ သို့သော် စက်ဝိုင်းခြမ်းတစ်ခုကို အချင်းမဏ္ဍိုင်ပြုကာ လှည့်လိုက်လျှင် စက်ဝိုင်း လုံး ပုံတစ်ခု ထွက်ပေါ်လာသည်။
<ref>မြန်မာ့စွယ်စုံကျမ်း၊ အတွဲ(၃)</ref>
 
Line ၄၀၁ ⟶ ၁၅၉:
 
= ကိုးကား =
{{reflist}}
<References />
 
[[Category:သင်္ချာ]]