အနီအောက်ရောင်ခြည်: တည်းဖြတ်မှု မူကွဲများ

အရေးမကြီးNo edit summary
အရေးမကြီးNo edit summary
စာကြောင်း ၂၃ -
ထိုသို့ဖြစ်ခြင်းမှာ အင်ဖရာရက်ခေါ် အပူရောင်ခြည်များ ရှိခြင်း
ကြောင့်ပင်ဖြစ်လေသည်။
 
Infrared (IR) ကိုတစ်ခါတစ်ရံတွင် infrared light ဟုခေါ်သည်ပြီး ပုံမှန်မြင်ရသောအလင်းများထက် လှိုင်းအလျားပိုရှည်သော လျှပ်စစ်သံလိုက်ဓါတ်ရောင်ခြည် (EMR) ဖြစ်သည်။ ယေဘူယျအားဖြင့် လူတို့၏ မျက်စိဖြင့် မမြင်နိုင်၊ သို့သော် Pulse လေဆာရောင်ခြည်မှ ၁၀၅၀ နာနိုမီတာ (nm) s အထိလှိုင်းအလျားများရှိ IR ကိုအချို့သောအခြေအနေများအောက်တွင်တွေ့မြင်နိုင်သည်။ IR လှိုင်းအလျားများသည်မြင်နိုင်သောရောင်စဉ်တန်း၏ အနီရောင်အစွန်းမှ ၁၀၀ မီလီမီတာ (၃၀၀ GHz) အထိနာနိုမီတာ ၇၀၀ (ကြိမ်နှုန်း 430 THz) အထိတိုးချဲ့သည်။ အခန်းအပူချိန်အနီးရှိအရာဝတ္ထုများမှထုတ်လွှတ်သောအပူဓါတ်ရောင်ခြည်အများစုသည်အနီအောက်ရောင်ခြည်ဖြစ်သည်။ EMR အားလုံးကဲ့သို့ IR သည်တောက်ပသောစွမ်းအင်ကိုသယ်ဆောင်ပြီးလှိုင်းကဲ့သို့၎င်းနှင့်၎င်း၏ကွမ်တန်အမှုန်ဖြစ်သည့်ဖိုတွန်ကဲ့သို့ပြုမူသည်။
 
အနီအောက်ရောင်ခြည်ဓါတ်ရောင်ခြည်ကို ၁၈၀၀ ခုနှစ်တွင် နက္ခတ္တဗေဒပညာရှင်ဆာဝီလျံဟတ်ရှယ်လ်က ရှာဖွေတွေ့ရှိခဲ့သည်။ ထိုသူသည် အပူမီတာအပေါ်သက်ရောက်မှုရှိသည့်စွမ်းအင်တစ်မျိုးအား ရှာဖွေတွေ့ရှိခဲ့ပြီး ထိုစွမ်းအင်သည် အနီရောင်အလင်းထက်စွမ်းအင်ပိုမိုနိမ့်သောရောင်စဉ်တန်းအမျိုးအစားဖြစ်ပြီး မမြင်နိုင်ချေ။ နေမှစွမ်းအင်စုစုပေါင်း၏ ထက်ဝက်ကျော်သည် နောက်ဆုံး၌ [အဘယ်အချိန်၌] ကမ္ဘာကိုအနီအောက်ရောင်ခြည်ဖြင့်ရောက်ရှိလာသည်ကိုတွေ့ရှိခဲ့သည်။ ထိုအနီရောင်အောက်ရောင်ခြင်းအား စုပ်ယူခြင်းနှင့် ထုတ်လွှတ်ခြင်း မျှချေသည် ကမ္ဘာ့ရာသီဥတုစက်ဝန်းအပေါ် များစွာအကျိုးသက်ရောက်သည်။
 
အနီအောက်ရောင်ခြည်များ ရေဒီယိုသဘောတရားအရ တုန်ခါမှုလှုပ်ရှားမှုများကိုပြောင်းလဲသောအခါ ၎င်းတို့အား မော်လီကျူးများက ထုတ်လွှတ်ခြင်း သို့မဟုတ်စုပ်ယူခြင်းပြုသည်။ ၎င်းသည် dipole moment ပြောင်းလဲခြင်းတခုအတွင်းတွင် မော်လီကျူးတစ်ခုအတွင်းရှိတုန်ခါမှုပုံစံများကိုနှိုးဆွပြီး သင့်လျော်သောအချိုးကျမော်လီကျူးများအတွက်ထိုစွမ်းအင်အခြေအနေများလေ့လာရန်အသုံးဝင်သောကြိမ်နှုန်းအတိုင်းအတာဖြစ်စေသည်။ Infrared spectroscopy သည်အနီအောက်ရောင်ခြည်တွင်ဖိုတွန်များ၏စုပ်ယူမှုနှင့်ထုတ်လွှင့်မှုကိုဆန်းစစ်သည်။
 
အနီအောက်ရောင်ခြည်ကိုစက်မှုလုပ်ငန်း၊ သိပ္ပံပညာ၊ စစ်ရေး၊ ဥပဒေစိုးမိုးရေးနှင့်ဆေးဘက်ဆိုင်ရာအသုံးချမှုများတွင်အသုံးပြုသည်။ ညဘက်မြင်ရသောကိရိယာများတွင် တက်ကြွသောအနီအောက်ရောင်ခြည် သုံး၍ လူနှင့်တိရိစ္ဆာန်များအားသတိမထားမိစေဘဲ လေ့လာနိုင်အောင်ဖန်တီးထားသည်။ အနီအောက်ရောင်ခြည်နက္ခတ္တဗေဒကို ဖုန်ထူသောနေရာများဖြစ်သည့် မော်လီကျူးတိမ်များ၊ ဂြိုလ်များကဲ့သို့အရာဝတ္ထုများကိုရှာဖွေရန်နှင့် စကြာဝဠာ၏အစောပိုင်းကာလများက အနီရောင်ပြောင်းသွားသောအရာဝတ္ထုများကို ကြည့်ရှုရန်အတွက် အာရုံခံကိရိယာတပ်ဆင်ထားသောအဝေးကြည့်မှန်ပြောင်းများတွင် တတ်ဆင်အသုံးပြုအသုံးပြုသည်။ အနီအောက်ရောင်ခြင်သုံး အပူ-ပုံရိပ်ဖမ်းကင်မရာများသည် အပူထိန်းချုပ်စနစ်များတွင် အပူဆုံးရှုံးမှုအားသိရှိရန်အတွက်၊ အရေပြားအတွင်းရှိသွေးပြောင်းလဲစီးဆင်းမှုကိုလေ့လာရန်နှင့် လျှပ်စစ်ပစ္စည်းများ၏အပူလွန်ကဲမှုကိုရှာဖွေရန်အသုံးပြုသည်။
 
စစ်ရေးနှင့်အရပ်ဘက်အသုံးချမှုများအတွက် ပစ်မှတ်ရယူခြင်း၊ စောင့်ကြည့်ခြင်း၊ ညဘက်မြင်ကွင်း၊ ပစ်ခတ်ခြင်း နှင့် နောက်လိုက်ခြင်းစသည်တို့တွင် ကျယ်ကျယ်ပြန့်ပြန့်အသုံးပြုသည်။ ပုံမှန်ခန္ဓာကိုယ်အပူချိန်ရှိလူသားများတွင် အထူးသဖြင့် လှိုင်းအလျား ၁၀ မီလီမီတာ (မိုက်ခရိုမီတာ) တွင်ဖြာထွက်သည်။ စစ်ရေးမဟုတ်သောအသုံးပြုမှုများတွင် အပူထိရောက်မှုခွဲခြမ်းစိတ်ဖြာခြင်း၊ ပတ်၀န်းကျင်ဆိုင်ရာစောင့်ကြည့်လေ့လာခြင်း၊ စက်မှုစက်ရုံစစ်ဆေးခြင်း၊ မူယစ်ဆေးဝါးရှာဖွေခြင်း၊ ဝေးလံသောအပူချိန်အာရုံခံခြင်း၊ တာတိုကြိုးမဲ့ဆက်သွယ်ရေး၊ ရောင်စဉ်တန်းနှင့် ရာသီဥတုခန့်မှန်းခြင်းတို့ပါဝင်သည်။
 
အင်ဖရာရက်ရောင်ခြည်သည် အလင်းရောင်ခြည်များ
Line ၆၂ ⟶ ၅၂:
အင်ဖရာရက်ရောင်ခြည်များကို အလိုရှိသည့်နေရာပေါ်သို့ လွှတ်
ထုတ် ကျရောက်စေနိုင်သော အင်ဖရာရက်ဓာတ်မီးတစ်မျိုးကို
တီထွင်ထားပေသည်။ <ref>မြန်မာ့စွယ်စုံကျမ်း၊ အတွဲ(၁၄)</ref>
 
Infrared (IR) ကိုတစ်ခါတစ်ရံတွင် infrared light ဟုခေါ်သည်ပြီး ပုံမှန်မြင်ရသောအလင်းများထက် လှိုင်းအလျားပိုရှည်သော လျှပ်စစ်သံလိုက်ဓါတ်ရောင်ခြည် (EMR) ဖြစ်သည်။ ယေဘူယျအားဖြင့် လူတို့၏ မျက်စိဖြင့် မမြင်နိုင်၊ သို့သော် Pulse လေဆာရောင်ခြည်မှ ၁၀၅၀ နာနိုမီတာ (nm) s အထိလှိုင်းအလျားများရှိ IR ကိုအချို့သောအခြေအနေများအောက်တွင်တွေ့မြင်နိုင်သည်။ IR လှိုင်းအလျားများသည်မြင်နိုင်သောရောင်စဉ်တန်း၏ အနီရောင်အစွန်းမှ ၁၀၀ မီလီမီတာ (၃၀၀ GHz) အထိနာနိုမီတာ ၇၀၀ (ကြိမ်နှုန်း 430 THz) အထိတိုးချဲ့သည်။ အခန်းအပူချိန်အနီးရှိအရာဝတ္ထုများမှထုတ်လွှတ်သောအပူဓါတ်ရောင်ခြည်အများစုသည်အနီအောက်ရောင်ခြည်ဖြစ်သည်။ EMR အားလုံးကဲ့သို့ IR သည်တောက်ပသောစွမ်းအင်ကိုသယ်ဆောင်ပြီးလှိုင်းကဲ့သို့၎င်းနှင့်၎င်း၏ကွမ်တန်အမှုန်ဖြစ်သည့်ဖိုတွန်ကဲ့သို့ပြုမူသည်။
 
အနီအောက်ရောင်ခြည်ဓါတ်ရောင်ခြည်ကို ၁၈၀၀ ခုနှစ်တွင် နက္ခတ္တဗေဒပညာရှင်ဆာဝီလျံဟတ်ရှယ်လ်က ရှာဖွေတွေ့ရှိခဲ့သည်။ ထိုသူသည် အပူမီတာအပေါ်သက်ရောက်မှုရှိသည့်စွမ်းအင်တစ်မျိုးအား ရှာဖွေတွေ့ရှိခဲ့ပြီး ထိုစွမ်းအင်သည် အနီရောင်အလင်းထက်စွမ်းအင်ပိုမိုနိမ့်သောရောင်စဉ်တန်းအမျိုးအစားဖြစ်ပြီး မမြင်နိုင်ချေ။ နေမှစွမ်းအင်စုစုပေါင်း၏ ထက်ဝက်ကျော်သည် နောက်ဆုံး၌ [အဘယ်အချိန်၌] ကမ္ဘာကိုအနီအောက်ရောင်ခြည်ဖြင့်ရောက်ရှိလာသည်ကိုတွေ့ရှိခဲ့သည်။ ထိုအနီရောင်အောက်ရောင်ခြင်းအား စုပ်ယူခြင်းနှင့် ထုတ်လွှတ်ခြင်း မျှချေသည် ကမ္ဘာ့ရာသီဥတုစက်ဝန်းအပေါ် များစွာအကျိုးသက်ရောက်သည်။
 
အနီအောက်ရောင်ခြည်များ ရေဒီယိုသဘောတရားအရ တုန်ခါမှုလှုပ်ရှားမှုများကိုပြောင်းလဲသောအခါ ၎င်းတို့အား မော်လီကျူးများက ထုတ်လွှတ်ခြင်း သို့မဟုတ်စုပ်ယူခြင်းပြုသည်။ ၎င်းသည် dipole moment ပြောင်းလဲခြင်းတခုအတွင်းတွင် မော်လီကျူးတစ်ခုအတွင်းရှိတုန်ခါမှုပုံစံများကိုနှိုးဆွပြီး သင့်လျော်သောအချိုးကျမော်လီကျူးများအတွက်ထိုစွမ်းအင်အခြေအနေများလေ့လာရန်အသုံးဝင်သောကြိမ်နှုန်းအတိုင်းအတာဖြစ်စေသည်။ Infrared spectroscopy သည်အနီအောက်ရောင်ခြည်တွင်ဖိုတွန်များ၏စုပ်ယူမှုနှင့်ထုတ်လွှင့်မှုကိုဆန်းစစ်သည်။
 
အနီအောက်ရောင်ခြည်ကိုစက်မှုလုပ်ငန်း၊ သိပ္ပံပညာ၊ စစ်ရေး၊ ဥပဒေစိုးမိုးရေးနှင့်ဆေးဘက်ဆိုင်ရာအသုံးချမှုများတွင်အသုံးပြုသည်။ ညဘက်မြင်ရသောကိရိယာများတွင် တက်ကြွသောအနီအောက်ရောင်ခြည် သုံး၍ လူနှင့်တိရိစ္ဆာန်များအားသတိမထားမိစေဘဲ လေ့လာနိုင်အောင်ဖန်တီးထားသည်။ အနီအောက်ရောင်ခြည်နက္ခတ္တဗေဒကို ဖုန်ထူသောနေရာများဖြစ်သည့် မော်လီကျူးတိမ်များ၊ ဂြိုလ်များကဲ့သို့အရာဝတ္ထုများကိုရှာဖွေရန်နှင့် စကြာဝဠာ၏အစောပိုင်းကာလများက အနီရောင်ပြောင်းသွားသောအရာဝတ္ထုများကို ကြည့်ရှုရန်အတွက် အာရုံခံကိရိယာတပ်ဆင်ထားသောအဝေးကြည့်မှန်ပြောင်းများတွင် တတ်ဆင်အသုံးပြုအသုံးပြုသည်။ အနီအောက်ရောင်ခြင်သုံး အပူ-ပုံရိပ်ဖမ်းကင်မရာများသည် အပူထိန်းချုပ်စနစ်များတွင် အပူဆုံးရှုံးမှုအားသိရှိရန်အတွက်၊ အရေပြားအတွင်းရှိသွေးပြောင်းလဲစီးဆင်းမှုကိုလေ့လာရန်နှင့် လျှပ်စစ်ပစ္စည်းများ၏အပူလွန်ကဲမှုကိုရှာဖွေရန်အသုံးပြုသည်။
 
စစ်ရေးနှင့်အရပ်ဘက်အသုံးချမှုများအတွက် ပစ်မှတ်ရယူခြင်း၊ စောင့်ကြည့်ခြင်း၊ ညဘက်မြင်ကွင်း၊ ပစ်ခတ်ခြင်း နှင့် နောက်လိုက်ခြင်းစသည်တို့တွင် ကျယ်ကျယ်ပြန့်ပြန့်အသုံးပြုသည်။ ပုံမှန်ခန္ဓာကိုယ်အပူချိန်ရှိလူသားများတွင် အထူးသဖြင့် လှိုင်းအလျား ၁၀ မီလီမီတာ (မိုက်ခရိုမီတာ) တွင်ဖြာထွက်သည်။ စစ်ရေးမဟုတ်သောအသုံးပြုမှုများတွင် အပူထိရောက်မှုခွဲခြမ်းစိတ်ဖြာခြင်း၊ ပတ်၀န်းကျင်ဆိုင်ရာစောင့်ကြည့်လေ့လာခြင်း၊ စက်မှုစက်ရုံစစ်ဆေးခြင်း၊ မူယစ်ဆေးဝါးရှာဖွေခြင်း၊ ဝေးလံသောအပူချိန်အာရုံခံခြင်း၊ တာတိုကြိုးမဲ့ဆက်သွယ်ရေး၊ ရောင်စဉ်တန်းနှင့် ရာသီဥတုခန့်မှန်းခြင်းတို့ပါဝင်သည်။
 
<ref>မြန်မာ့စွယ်စုံကျမ်း၊ အတွဲ(၁၄)</ref>
<ref name="Sliney1976">{{cite journal| last1=Sliney | first1=David H. | last2=Wangemann | first2=Robert T. | last3=Franks | first3=James K. | last4 =Wolbarsht | first4=Myron L. | year=1976 | title=Visual sensitivity of the eye to infrared laser radiation | journal=Journal of the Optical Society of America | volume=66 | issue=4 | pages=339–341 | doi=10.1364/JOSA.66.000339 | url =http://www.opticsinfobase.org/josa/abstract.cfm?uri=josa-66-4-339 | quote=The foveal sensitivity to several near-infrared laser wavelengths was measured. It was found that the eye could respond to radiation at wavelengths at least as far as 1064 nm. A continuous 1064 nm laser source appeared red, but a 1060 nm pulsed laser source appeared green, which suggests the presence of second harmonic generation in the retina. |subscription=yes}}</ref><ref name="LynchLivingston2001">{{cite book|last1=Lynch|first1=David K.|last2=Livingston|first2=William Charles|title=Color and Light in Nature|url=http://books.google.com/books?id=4Abp5FdhskAC&pg=PA231|accessdate=12 October 2013|edition=2nd|year=2001|publisher=Cambridge University Press|location=Cambridge, UK|isbn=978-0-521-77504-5|page=231|quote=Limits of the eye's overall range of sensitivity extends from about 310 to 1050 nanometers}}</ref><ref name="Dash2009">{{cite book|last1=Dash|first1=Madhab Chandra|last2=Dash|first2=Satya Prakash|title=Fundamentals Of Ecology 3E|url=http://books.google.com/books?id=7mW4-us4Yg8C&pg=PA213|accessdate=18 October 2013|year=2009|publisher=Tata McGraw-Hill Education|isbn=978-1-259-08109-5|page=213|quote=Normally the human eye responds to light rays from 390 to 760 nm. This can be extended to a range of 310 to 1,050 nm under artificial conditions.}}</ref><ref name="Saidman1933">{{cite journal| last1=Saidman | first1=Jean | date=15 May 1933 | title=Sur la visibilité de l'ultraviolet jusqu'à la longueur d'onde 3130 | trans_title=The visibility of the ultraviolet to the wave length of 3130 | journal=Comptes rendus de l'Académie des sciences | volume=196 | pages=1537–9 | language=French | url =http://visualiseur.bnf.fr/ark:/12148/bpt6k3148d}}</ref>
== ကိုးကား ==